Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 624
Filtrar
1.
Mol Ecol ; 33(9): e17331, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38533629

RESUMO

Marine sediments cover 70% of the Earth's surface, and harbour diverse bacterial communities critical for marine biogeochemical processes, which affect climate change, biodiversity and ecosystem functioning. Nematodes, the most abundant and species-rich metazoan organisms in marine sediments, in turn, affect benthic bacterial communities and bacterial-mediated ecological processes, but the underlying mechanisms by which they affect biogeochemical cycles remain poorly understood. Here, we demonstrate using a metatranscriptomic approach that nematodes alter the taxonomic and functional profiles of benthic bacterial communities. We found particularly strong stimulation of nitrogen-fixing and methane-oxidizing bacteria in the presence of nematodes, as well as increased functional activity associated with methane metabolism and degradation of various carbon compounds. This study provides empirical evidence that the presence of nematodes results in taxonomic and functional shifts in active bacterial communities, indicating that nematodes may play an important role in benthic ecosystem processes.


Assuntos
Bactérias , Ecossistema , Sedimentos Geológicos , Nematoides , Animais , Nematoides/microbiologia , Nematoides/genética , Bactérias/genética , Bactérias/classificação , Sedimentos Geológicos/microbiologia , Biodiversidade , Transcriptoma , Microbiota/genética , Metano/metabolismo
2.
World J Microbiol Biotechnol ; 40(3): 101, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38366186

RESUMO

Xenorhabdus, known for its symbiotic relationship with Entomopathogenic nematodes (EPNs), belongs to the Enterobacteriaceae family. This dual-host symbiotic nematode exhibits pathogenic traits, rendering it a promising biocontrol agent against insects. Our prior investigations revealed that Xenorhabdus stockiae HN_xs01, isolated in our laboratory, demonstrates exceptional potential in halting bacterial growth and displaying anti-tumor activity. Subsequently, we separated and purified the supernatant of the HN_xs01 strain and obtained a new compound with significant inhibitory activity on tumor cells, which we named XNAE. Through LC-MS analysis, the mass-to-nucleus ratio of XNAE was determined to be 254.24. Our findings indicated that XNAE exerts a time- and dose-dependent inhibition on B16 and HeLa cells. After 24 h, its IC50 for B16 and HeLa cells was 30.178 µg/mL and 33.015 µg/mL, respectively. Electron microscopy revealed conspicuous damage to subcellular structures, notably mitochondria and the cytoskeleton, resulting in a notable reduction in cell numbers among treated tumor cells. Interestingly, while XNAE exerted a more pronounced inhibitory effect on B16 cells compared to HeLa cells, it showed no discernible impact on HUVEC cells. Treatment of B16 cells with XNAE induced early apoptosis and led to cell cycle arrest in the G2 phase, as evidenced by flow cytometry analysis. The impressive capability of X. stockiae HN_xs01 in synthesizing bioactive secondary metabolites promises to significantly expand the reservoir of natural products. Further exploration to identify the bioactivity of these compounds holds the potential to shed light on their roles in bacteria-host interaction. Overall, these outcomes underscore the promising potential of XNAE as a bioactive compound for tumor treatment.


Assuntos
Nematoides , Xenorhabdus , Animais , Humanos , Xenorhabdus/metabolismo , Células HeLa , Nematoides/microbiologia , Enterobacteriaceae , Simbiose
3.
J Agric Food Chem ; 72(7): 3560-3571, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38340066

RESUMO

The formation of the trapping device induced by nematodes has been assumed as an indicator for a switch from saprophytic to predacious lifestyles for nematode-trapping fungi. However, fungal nematocidal activity is not completely synonymous with fungal trap formation. We found that the predominant nematode-trapping fungus Arthrobotrys oligospora harbored a rare NRPS (Ao415) gene cluster that was mainly distributed in nematode-trapping fungi. The gene Ao415 putatively encodes a protein with a unique domain organization, distinct from other NRPSs in other fungi. Mutation of the two key biosynthetic genes Ao415 and Ao414 combined with nontarget metabolic analysis revealed that the Ao415 gene cluster was responsible for the biosynthesis of a hydroxamate siderophore, desferriferrichrome (1). Lack of desferriferrichrome (1) and its hydroxamate precursor (3) could lead to significantly increased Fe3+ content, which induced fungal trap formation without a nematode inducer. Furthermore, the addition of Fe3+ strongly improved fungal trap formation but deleteriously caused broken traps. The addition of 1 significantly attenuated trap formation but enhanced fungal nematicidal activity. Our findings indicate that iron is a key factor for trap formation and provide a new insight into the underlying mechanism of siderophores in nematode-trapping fungi.


Assuntos
Ascomicetos , Nematoides , Animais , Nematoides/microbiologia , Antinematódeos/farmacologia , Antinematódeos/metabolismo , Ascomicetos/genética , Ascomicetos/metabolismo , Família Multigênica
4.
Toxins (Basel) ; 16(1)2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38251242

RESUMO

Xenorhabdus and Photorhabdus, bacterial symbionts of entomopathogenic nematodes Steinernema and Heterorhabditis, respectively, have several biological activities including insecticidal and antimicrobial activities. Thus, XnChi, XhChi, and PtChi, chitinases of X. nematophila, X. hominickii, and P. temperata isolated from Korean indigenous EPNs S. carpocapsae GJ1-2, S. monticolum GJ11-1, and H. megidis GJ1-2 were cloned and expressed in Escherichia coli BL21 to compare their biological activities. Chitinase proteins of these bacterial symbionts purified using the Ni-NTA system showed different chitobiosidase and endochitinase activities, but N-acetylglucosamidinase activities were not shown in the measuring of chitinolytic activity through N-acetyl-D-glucosarmine oligomers. In addition, the proteins showed different insecticidal and antifungal activities. XnChi showed the highest insecticidal activity against Galleria mellonella, followed by PtChi and XhChi. In antifungal activity, XhChi showed the highest half-maximal inhibitory concentration (IC50) against Fusarium oxysporum with 0.031 mg/mL, followed by PtChi with 0.046 mg/mL, and XnChi with 0.072 mg/mL. XhChi also showed the highest IC50 against F. graminearum with 0.040 mg/mL, but XnChi was more toxic than PtChi with 0.055 mg/mL and 0.133 mg/mL, respectively. This study provides an innovative approach to the biological control of insect pests and fungal diseases of plants with the biological activity of symbiotic bacterial chitinases of entomopathogenic nematodes.


Assuntos
Bactérias , Quitinases , Inseticidas , Nematoides , Simbiose , Animais , Antifúngicos/metabolismo , Bactérias/genética , Bactérias/metabolismo , Quitinases/genética , Quitinases/metabolismo , Escherichia coli/genética , Inseticidas/metabolismo , Nematoides/genética , Nematoides/microbiologia , Simbiose/genética , Simbiose/fisiologia , República da Coreia
5.
Rev. biol. trop ; 71(1): e55913, dic. 2023. graf
Artigo em Inglês | LILACS, BNUY-Enf | ID: biblio-1550732

RESUMO

Abstract Introduction: Chemical pollution represents a great concern to aquatic organisms, especially fish. Metals enter the aquatic environment from a variety of sources, including natural biogeochemical cycles and anthropogenic sources such as industrial and residential effluents, mining and atmospheric sources. Objective: To describe the Eustrongylides sp. larvae and the interaction with their fish hosts as indicators of mercury (Hg) contamination in the Brazilian Amazon, and the distribution of Hg in the internal organs of fish species Hoplias malabaricus and Pygocentrus nattereri collected in oxbow lakes on the Tapajós River, in the municipality of Santarém, in the state of Pará. Methods: Total Hg was analyzed using the Direct Hg Analyzer - DMA-80. Concentrations of Hg in Eustrongylides sp. were compared with those found in the tissues/organs of the hosts H. malabaricus and P. nattereri. Hg concentrations in the host/parasite system were statistically compared using Principal Component Analysis. The bioconcentration factor (BCF) was calculated to assess the bioaccumulation capacity of metals in Eustrongylides sp. larvae, comparing the concentration of Hg in the parasite with that accumulated in the musculature of infected hosts. Results: Hg concentrations in all tissues/organs analyzed were higher in the parasitic species Eustrongylides sp. larvae when compared with those found in tissues/organs of H. malabaricus and P. nattereri. There was an inversely proportional relationship, showing that when Eustrongylides sp. larvae are present, the concentration in the parasite is higher than in the musculature of host fish H. malabaricus and P. nattereri. The BCF of Hg was found by comparing Eustrongylides sp. larvae/H. malabaricus muscle and was observed during a flood (BCF Hg = 15 364). Conclusions: The results confirm the greater bioaccumulative capacity of Eustrongylides sp. compared to its host. The data indicated the viability of using Eustrongylides sp. larvae in biomonitoring programs. It is worth mentioning that fish samples for Hg analysis must be free of parasites since their presence can alter the results.


Resumen Introducción: La contaminación química del hábitat acuático representa un gran peligro para organismos acuáticos, especialmente para peces. Los metales ingresan al ambiente acuático desde una variedad de fuentes, incluidos los ciclos biogeoquímicos naturales y fuentes antropogénicas, como efluentes industriales y residenciales, minería y fuentes atmosféricas. Objetivo: Describir las especies de Eustrongylides sp. y la interacción con sus peces hospederos como indicadores de contaminación por mercurio en la Amazonía brasileña, y la distribución en los órganos internos de las especies de peces Hoplias malabaricus y Pygocentrus nattereri recolectadas en cochas del Río Tapajós, en el municipio de Santarém, del estado de Pará. Métodos: El Hg total se analizó utilizando el Direct Hg Analyzer - DMA-80. Las concentraciones de Eustrongylides sp. se compararon con las encontrados en los tejidos/órganos de los hospederos H. malabaricus y P. nattereri. Las concentraciones en el sistema hospedero/parásito se compararon estadísticamente utilizando el análisis de componentes principales. Se calculó el factor de bioconcentración (BCF) para evaluar la capacidad de bioacumulación de metales en larvas de Eustrongylides sp., comparando la concentración en el parásito con la acumulada en la musculatura de los hospederos infectados. Resultados: Las concentraciones de Hg en todos los tejidos/órganos analizados fueron mayores en las larvas de la especie parasitaria Eustrongylides sp. en comparación con las encontradas en los tejidos/órganos de H. malabaricus y P. nattereri. Hubo una relación inversamente proporcional, mostrando que cuando las larvas de Eustrongylides sp. están presentes, la concentración en el parásito es mayor que en la musculatura de los peces hospederos H. malabaricus y P. nattereri. El BCF de Hg se encontró comparando Eustrongylides sp. larvas/ músculo H. malabaricus y se observó durante una inundación (BCF Hg = 15 364). Conclusiones: Los resultados confirman la mayor capacidad bioacumulativa de Eustrongylides sp. en comparación con su hospedero. Los datos indicaron la viabilidad de utilizar larvas de Eustrongylides sp. en programas de biomonitoreo. Cabe mencionar que las muestras de pescado para análisis de Hg deben estar libres de parásitos ya que su presencia puede alterar los resultados.


Assuntos
Animais , Mercúrio/análise , Nematoides/microbiologia , Brasil , Poluição de Rios , Ecossistema Amazônico , Peixes/microbiologia
6.
World J Microbiol Biotechnol ; 40(2): 46, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38114752

RESUMO

The objective of this paper is to explore the function of the AOL-s00215g415 (Aog415) gene, which encodes for the synthesis of siderophore in the nematode trapping fungal model strain A. oligospora, in order to understand the relationship between siderophore biosynthesis and nematode trapping activity. After a through sequence analysis, it was determined that Aog415 is a siderophore-synthesizing NRPS. The product of this gene was then identified to be the hydroxamate siderophore desferriferrichrome, using mass spectrometry analysis. When compared to the WT strains, the Aog415 knockout strain exhibited a 60% decrease in siderophore content in fermentation broth. Additionally, the number of predatory rings of decreased by 23.21%, while the spore yield increased by 37.34%. The deletion of Aog415 did not affect the growth of A. oligospora in diverse nutrient medium. Lipid metabolism-related pathways were the primary targets of Aog415 disruption as revealed by the metabolomic analysis. In comparison to the WT, a significant reduction in the levels of glycerophospholipids, and glycolipids was observed in the mutation. The metabolic alteration in fatty acyls and amino acid-like molecules were significantly disrupted. The knockout of Aog415 impaired the biosynthesis of the hydroxamate siderophore desferriferrichrome, remodeled the flow of fatty acid in A. oligospora, and mainly reprogrammed the membrane lipid metabolism in cells. Desferriferrichrome, a hydroxamate siderophore affects the growth, metabolism and nematode trapping ability of A. oligospora by regulating iron intake and cell membrane homeostasis. Our study uncovered the significant contribution of siderophores to the growth and nematode trapping ability and constructed the relationship among siderophores biosynthesis, lipid metabolism and nematode trapping activity of A. oligospora, which provides a new insight for the development of nematode biocontrol agents based on nematode trapping fungi.


Assuntos
Nematoides , Animais , Nematoides/microbiologia , Metaboloma , Fenótipo , Sideróforos , Lipídeos
7.
J Equine Vet Sci ; 131: 104930, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37739142

RESUMO

The indiscriminate use of antiparasitics for the treatment of helminths in horses has caused the ineffectiveness of commonly used chemical active principles, therefore, new alternatives such as the use of helminthophagous fungi have been studied. In this context, this study aimed to evaluate the in vitro efficacy of the commercial formulation Bioverm, composed of the fungus Duddingtonia flagrans strain AC001, in the reduction of gastrointestinal nematode larvae in equine feces. In coproculture, the genus Cyathostomum sp. was the most prevalent in the analyzed samples. The commercial formulation with D. flagrans demonstrated effectiveness in the predation of Cyathostomum sp. in tests. The recommended dose of 0.4 g, containing 105 chlamydospores per gram of product, reduced larvae by 44.23%, while the extrapolated dose of 1.0 g with the same concentrations of chlamydospores (105/g) resulted in a reduction of 57.20%, indicating the effectiveness of the product in controlling infective larvae.


Assuntos
Ascomicetos , Doenças dos Cavalos , Nematoides , Infecções por Nematoides , Animais , Cavalos , Infecções por Nematoides/parasitologia , Infecções por Nematoides/terapia , Infecções por Nematoides/veterinária , Nematoides/microbiologia , Fezes/microbiologia , Doenças dos Cavalos/terapia
8.
PLoS Genet ; 19(7): e1010832, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37399201

RESUMO

Adaptation of organisms to environmental change may be facilitated by the creation of new genes. New genes without homologs in other lineages are known as taxonomically-restricted orphan genes and may result from divergence or de novo formation. Previously, we have extensively characterized the evolution and origin of such orphan genes in the nematode model organism Pristionchus pacificus. Here, we employ large-scale transcriptomics to establish potential functional associations and to measure the degree of transcriptional plasticity among orphan genes. Specifically, we analyzed 24 RNA-seq samples from adult P. pacificus worms raised on 24 different monoxenic bacterial cultures. Based on coexpression analysis, we identified 28 large modules that harbor 3,727 diplogastrid-specific orphan genes and that respond dynamically to different bacteria. These coexpression modules have distinct regulatory architecture and also exhibit differential expression patterns across development suggesting a link between bacterial response networks and development. Phylostratigraphy revealed a considerably high number of family- and even species-specific orphan genes in certain coexpression modules. This suggests that new genes are not attached randomly to existing cellular networks and that integration can happen very fast. Integrative analysis of protein domains, gene expression and ortholog data facilitated the assignments of biological labels for 22 coexpression modules with one of the largest, fast-evolving module being associated with spermatogenesis. In summary, this work presents the first functional annotation for thousands of P. pacificus orphan genes and reveals insights into their integration into environmentally responsive gene networks.


Assuntos
Genoma Helmíntico , Nematoides , Animais , Nematoides/genética , Nematoides/microbiologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-37171451

RESUMO

Six Gram-negative, rod-shaped bacterial strains isolated from Heterorhabditis amazonensis entomopathogenic nematodes were characterized to determine their taxonomic position. 16S rRNA and gyrB gene sequences indicate that they belong to the class Gammaproteobacteria, family Morganellaceae and genus Photorhabdus, and that some of them are conspecifics. Two of them, APURET and JART, were selected for further molecular characterization using whole genome- and whole-proteome-based phylogenetic reconstructions and sequence comparisons. Phylogenetic reconstructions using whole genome and whole proteome sequences show that strains APURET and JART are closely related to Photorhabdus luminescens subsp. luminescens ATCC 29999T and to P. luminescens subsp. mexicana MEX47-22T. Moreover, digital DNA-DNA hybridization (dDDH) values between APURET and P. luminescens subsp. luminescens ATCC 29999T, APURET and P. luminescens subsp. mexicana MEX47-22T, and APURET and JART are 61.6, 61.2 and 64.1 %, respectively. These values are below the 70 % divergence threshold that delimits prokaryotic species. dDDH scores between JART and P. luminescens subsp. luminescens ATCC 29999T and between JART and P. luminescens subsp. mexicana MEX47-22T are 71.9 and 74.8 %, respectively. These values are within the 70 and 79 % divergence thresholds that delimit prokaryotic subspecies. Based on these genomic divergence values, APURET and JART represent two different taxa, for which we propose the names: Photorhabdus aballayi sp. nov. with APURET (=CCM 9236T =CCOS 2019T) as type strain and Photorhabdus luminescens subsp. venezuelensis subsp. nov. with JART (=CCM 9235T =CCOS 2021T) as type strain. Our study contributes to a better understanding of the biodiversity of an important bacterial group with enormous biotechnological and agricultural potential.


Assuntos
Nematoides , Photorhabdus , Animais , Filogenia , RNA Ribossômico 16S/genética , Proteoma/genética , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , DNA Bacteriano/genética , Composição de Bases , Ácidos Graxos/química , Nematoides/microbiologia
10.
Sci China Life Sci ; 66(11): 2663-2679, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37233873

RESUMO

The methylation of lysine 4 of histone H3 (H3K4), catalyzed by the histone methyltransferase KMT2/SET1, has been functionally identified in many pathogenic fungi but remains unexplored in nematode-trapping fungi (NTFs). Here, we report a regulatory mechanism of an H3K4-specific SET1 orthologue, AoSET1, in the typical nematode-trapping fungus Arthrobotrys oligospora. When the fungus is induced by the nematode, the expression of AoSET1 is up-regulated. Disruption of AoSet1 led to the abolishment of H3K4me. Consequently, the yield of traps and conidia of ΔAoSet1 was significantly lower than that of the WT strain, and the growth rate and pathogenicity were also compromised. Moreover, H3K4 trimethylation was enriched mainly in the promoter of two bZip transcription factor genes (AobZip129 and AobZip350) and ultimately up-regulated the expression level of these two transcription factor genes. In the ΔAoSet1 and AoH3K4A strains, the H3K4me modification level was significantly decreased at the promoter of transcription factor genes AobZip129 and AobZip350. These results suggest that AoSET1-mediated H3KEme serves as an epigenetic marker of the promoter region of the targeted transcription factor genes. Furthermore, we found that AobZip129 negatively regulates the formation of adhesive networks and the pathogenicity of downstream AoPABP1 and AoCPR1. Our findings confirm that the epigenetic regulatory mechanism plays a pivotal role in regulating trap formation and pathogenesis in NTFs, and provide novel insights into the mechanisms of interaction between NTFs and nematodes.


Assuntos
Ascomicetos , Nematoides , Animais , Histonas/genética , Histonas/metabolismo , Nematoides/genética , Nematoides/microbiologia , Ascomicetos/fisiologia , Fatores de Transcrição/metabolismo , Metiltransferases
11.
J Invertebr Pathol ; 198: 107925, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37087093

RESUMO

Xenorhabdus, like other Gram-negative bacteria, possesses a Type 6 Secretion System (T6SS) which acts as a contact-dependent molecular syringe, delivering diverse proteins (effectors) directly into other cells. The number of T6SS loci encoded in Xenorhabdus genomes are variable both at the inter and intraspecific level. Some environmental isolates of Xenorhabdus bovienii, encode at least one T6SS locus while others possess two loci. Previous work conducted by our team demonstrated that X. bovienii [Jollieti strain SS-2004], which has two T6SSs (T6SS-1 and T6SS-2), hcp genes are required for biofilm formation. Additionally, while T6SS-1 hcp gene plays a role in the antibacterial competition, T6SS-2 hcp does not. In this study, we tested the hypothesis that vgrG genes are also involved in mutualistic and pathogenic interactions. For this purpose, targeted mutagenesis together with wet lab experiments including colonization, competition, biofilm, and virulence experiments, were carried out to assess the role of vgrG in the mutualistic and antagonistic interactions in the life cycle of XBJ. Our results revealed that vgrG genes are not required for biofilm formation but play a role in outcompeting other Xenorhabdus bacteria. Additionally, both vgrG and hcp genes are required to fully colonize the nematode host. We also demonstrated that hcp and vgrG genes in both T6SS clusters are needed to support the reproductive fitness of the nematodes. Overall, results from this study revealed that in X. bovieni jollieti strain, the twoT6SS clusters play an important role in the fitness of the nematodes in relation to colonization and reproduction. These results lay a foundation for further investigations on the functional significance of T6SSs in the mutualistic and pathogenic lifecycle of Xenorhabdus spp.


Assuntos
Nematoides , Sistemas de Secreção Tipo VI , Xenorhabdus , Animais , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo , Virulência/genética , Nematoides/genética , Nematoides/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
12.
Front Immunol ; 14: 1122451, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006283

RESUMO

A key aspect of parasitic nematode infection is the nematodes' ability to evade and/or suppress host immunity. This immunomodulatory ability is likely driven by the release of hundreds of excretory/secretory proteins (ESPs) during infection. While ESPs have been shown to display immunosuppressive effects on various hosts, our understanding of the molecular interactions between individual proteins released and host immunity requires further study. We have recently identified a secreted phospholipase A2 (sPLA2) released from the entomopathogenic nematode (EPN) Steinernema carpocapsae we have named Sc-sPLA2. We report that Sc-sPLA2 increased mortality of Drosophila melanogaster infected with Streptococcus pneumoniae and promoted increased bacterial growth. Furthermore, our data showed that Sc-sPLA2 was able to downregulate both Toll and Imd pathway-associated antimicrobial peptides (AMPs) including drosomycin and defensin, in addition to suppressing phagocytosis in the hemolymph. Sc-sPLA2 was also found to be toxic to D. melanogaster with the severity being both dose- and time-dependent. Collectively, our data highlighted that Sc-sPLA2 possessed both toxic and immunosuppressive capabilities.


Assuntos
Nematoides , Fosfolipases A2 Secretórias , Animais , Drosophila melanogaster , Hemócitos , Imunidade Humoral , Interações Hospedeiro-Parasita , Nematoides/microbiologia , Nematoides/fisiologia
13.
mBio ; 14(2): e0340222, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36883821

RESUMO

Bacterivore nematodes are the most abundant animals in the biosphere, largely contributing to global biogeochemistry. Thus, the effects of environmental microbes on the nematodes' life-history traits are likely to contribute to the general health of the biosphere. Caenorhabditis elegans is an excellent model to study the behavioral and physiological outputs of microbial diets. However, the effects of complex natural bacterial assemblies have only recently been reported, as most studies have been carried out with monoxenic cultures of laboratory-reared bacteria. Here, we quantified the physiological, phenotypic, and behavioral traits of C. elegans feeding on two bacteria that were coisolated with wild nematodes from a soil sample. These bacteria were identified as a putative novel species of Stenotrophomonas named Stenotrophomonas sp. strain Iso1 and a strain of Bacillus pumilus designated Iso2. The distinctive behaviors and developmental patterns observed in animals fed with individual isolates changed when bacteria were mixed. We studied in more depth the degeneration rate of the touch circuit of C. elegans and show that B. pumilus alone is protective, while the mix with Stenotrophomonas sp. is degenerative. The analysis of the metabolite contents of each isolate and their combination identified NAD+ as being potentially neuroprotective. In vivo supplementation shows that NAD+ restores neuroprotection to the mixes and also to individual nonprotective bacteria. Our results highlight the distinctive physiological effects of bacteria resembling native diets in a multicomponent scenario rather than using single isolates on nematodes. IMPORTANCE Do behavioral choices depend on animals' microbiota? To answer this question, we studied how different bacterial assemblies impact the life-history traits of the bacterivore nematode C. elegans using isolated bacteria found in association with wild nematodes in Chilean soil. We identified the first isolate, Iso1, as a novel species of Stenotrophomonas and isolate Iso2 as Bacillus pumilus. We find that worm traits such as food choice, pharyngeal pumping, and neuroprotection, among others, are dependent on the biota composition. For example, the neurodegeneration of the touch circuit needed to sense and escape from predators in the wild decreases when nematodes are fed on B. pumilus, while its coculture with Stenotrophomonas sp. eliminates neuroprotection. Using metabolomics analysis, we identify metabolites such as NAD+, present in B. pumilus yet lost in the mix, as being neuroprotective and validated their protective effects using in vivo experiments.


Assuntos
Caenorhabditis elegans , Nematoides , Animais , Caenorhabditis elegans/microbiologia , NAD/metabolismo , Nematoides/microbiologia , Bactérias/metabolismo , Solo
14.
mSphere ; 8(2): e0001223, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36786584

RESUMO

The peroxins encoded by PEX genes involved in peroxisome biogenesis play a crucial role in cellular metabolism and pathogenicity in fungi. Herein, we characterized a filamentous fungus-specific peroxin Pex14/17 in the Arthrobotrys oligospora, a representative species of nematode-trapping fungi. The deletion of AoPEX14/17 resulted in a remarkable reduction in mycelial growth, conidia yield, trap formation, and pathogenicity. Compared with the wild-type strain, the ΔAopex14/17 mutant exhibited more lipid droplet and reactive oxygen species accumulation accompanied with a significant decrease in fatty acid utilization and tolerance to oxidative stress. Transcriptomic analysis indicated that AoPEX14/17 was involved in the regulation of metabolism, genetic information processing, environmental information processing, and cellular processes. In subcellular morphology, the deletion of AoPEX14/17 resulted in a decrease in the number of cell nuclei, autophagosomes, and Woronin bodies. Metabolic profile analysis showed that AoPex14/17 affects the biosynthesis of secondary metabolites. Yeast two-hybrid assay revealed that AoPex14/17 interacted with AoPex14 but not with AoPex13. Taken together, our results suggest that Pex14/17 is the main factor for modulating growth, development, and pathogenicity in A. oligospora. IMPORTANCE Peroxisome biogenesis genes (PEX) play an important role in growth, development, and pathogenicity in pathogenic fungi. However, the roles of PEX genes remain largely unknown in nematode-trapping (NT) fungi. Here, we provide direct evidence that AoPex14/17 regulates mycelial growth, conidiation, trap formation, autophagy, endocytosis, catalase activity, stress response to oxidants, lipid metabolism, and reactive oxygen species production. Transcriptome analysis and metabolic profile suggested that AoPex14/17 is involved in multiple cellular processes and the regulation of secondary metabolism. Therefore, our study extends the functions of PEX genes, which helps to elucidate the mechanism of organelle development and trap formation in NT fungi and lays the foundation for the development of efficient nematode biocontrol agents.


Assuntos
Ascomicetos , Nematoides , Animais , Metabolismo Secundário , Espécies Reativas de Oxigênio/metabolismo , Nematoides/microbiologia , Ascomicetos/genética
15.
J Basic Microbiol ; 63(6): 678-686, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36808634

RESUMO

Graphilbum species are important blue stain fungi associated with pine trees and are widely distributed throughout Asia, Australia, and North Africa. Pine wood nematode (PWN) primarily feed on ophiostomatoid fungi such as Graphilbum sp. in wood, the population of PWNs was increased, and incomplete organelle structures were observed in Graphilbum sp. hyphal cells following exposure to PWNs. In this study, we showed that Rho and Ras were involved in the MAPK pathway, SNARE binding and small GTPase-mediated signal transduction, and their expression was upregulated in the treatment group. However, the expression of the Rab7 involved in MAPK and small GTPase-mediated signal pathway was downregulated in the treatment group. Thus, further research is needed to study the MAPK pathway and related Ras and Rho genes in Graphilbum sp. associated with the PWN population. Overall, transcriptomic analysis clarified the basic mechanisms of mycelial growth in Graphilbum sp. fungus used as a food source by PWNs.


Assuntos
Nematoides , Ophiostomatales , Pinus , Animais , Transcriptoma , Micélio , Pinus/microbiologia , Nematoides/genética , Nematoides/microbiologia , Doenças das Plantas/microbiologia
16.
Trends Microbiol ; 31(6): 629-643, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36801155

RESUMO

Single host-symbiont interactions should be reconsidered from the perspective of the pathobiome. We revisit here the interactions between entomopathogenic nematodes (EPNs) and their microbiota. We first describe the discovery of these EPNs and their bacterial endosymbionts. We also consider EPN-like nematodes and their putative symbionts. Recent high-throughput sequencing studies have shown that EPNs and EPN-like nematodes are also associated with other bacterial communities, referred to here as the second bacterial circle of EPNs. Current findings suggest that some members of this second bacterial circle contribute to the pathogenic success of nematodes. We suggest that the endosymbiont and the second bacterial circle delimit an EPN pathobiome.


Assuntos
Nematoides , Simbiose , Animais , Nematoides/microbiologia , Nematoides/patogenicidade
17.
Fungal Genet Biol ; 166: 103782, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36849068

RESUMO

Calcium ion (Ca2+) is a universal second messenger involved in regulating diverse processes in animals, plants, and fungi. The low-affinity calcium uptake system (LACS) participates in acquiring Ca2+ from extracellular environments under high extracellular Ca2+ concentration. Unlike most fungi, which encode only one protein (FIG1) for LACS, nematode-trapping fungi (NTF) encode two related proteins. AoFIG_2, the NTF-specific LACS component encoded by adhesive network-trap forming Arthrobotrys oligospora, was shown to be required for conidiation and trap formation. We characterized the role of DhFIG_2, an AoFIG_2 ortholog encoded by knob-trap forming Dactylellina haptotyla, in growth and development to expand our understanding of the role of LACS in NTF. Because repeated attempts to disrupt DhFIG_2 failed, knocking down the expression of DhFIG_2 via RNA interference (RNAi) was used to study its function. RNAi of DhFIG_2 significantly decreased its expression, severely reduced conidiation and trap formation, and affected vegetative growth and stress responses, suggesting that this component of LACS is crucial for trap formation and conidiation in NTF. Our study demonstrated the utility of RNAi assisted by ATMT for studying gene function in D. haptotyla.


Assuntos
Cálcio , Nematoides , Animais , Nematoides/genética , Nematoides/microbiologia , Transporte Biológico
18.
BMC Microbiol ; 23(1): 10, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36627592

RESUMO

Endophytic bacteria are an important biological control for nematodes. We isolated the nematicidal Bacillus cereus NJSZ-13 from healthy Pinus elliottii trunks. Bioassay experiments showed killing of all tested nematodes by proteins from the NJSZ-13 culture filtrate within 72 h. Degradation of the nematode cuticles was observed, suggesting the action of extracellular bacterial enzymes. The responsible protease was purified by ammonium sulfate precipitation, hydrophobic interaction chromatography, ion-exchange chromatography, and SDS-PAGE. The protease had a molecular weight of 28 kDa and optimal activity at 55 °C and pH 9, indicating an alkaline protease. The study suggests the potential for using this B. cereus NJSZ-13 strain protease to prevent pinewood nematode infection.


Assuntos
Nematoides , Pinus , Animais , Bacillus cereus/metabolismo , Fatores de Virulência , Peptídeo Hidrolases/metabolismo , Nematoides/microbiologia
19.
J Invertebr Pathol ; 196: 107871, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36493844

RESUMO

Photorhabdus spp. and Xenorhabdus spp. bacteria produce a variety of molecules that inhibit bacterial and fungal contamination as well as deter scavenging invertebrates and some vertebrates in soil. Certain Heterorhabditis/Photorhabdus-infected insect cadavers can be bioluminescent in the dark and/or turn red from the production of anthraquinone pigments. The role of these traits remains unresolved. The aim of the present study was to evaluate the role of red color (anthraquinone) and bioluminescence on the deterrence of insect scavengers. Our data shows that scavenger deterrent factor (SDF) is not related to red cadaver coloration or bioluminescence activity as crickets and ants did not consume Galleria mellonella cadavers infected by P. laumondii strain 48-02 and X. bovienii. Both bacteria exhibit SDF activity but do not produce anthraquinone. Also, the insects were not affected by anthraquinone in agar plugs prepared with supernatant from induced P. laumondii Δpptase Pcep-KM-antA (SVS-275) mutant strain, which overproduces anthraquinone. Since bioluminescence and anthraquinone are not responsible for SDF activity against insect scavengers, more studies are needed to elucidate the SDF compound from Xenorhabdus and Photorhabdus bacteria.


Assuntos
Mariposas , Nematoides , Photorhabdus , Xenorhabdus , Animais , Cadáver , Insetos , Nematoides/microbiologia , Simbiose
20.
Environ Microbiol ; 25(2): 283-293, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36354014

RESUMO

Plant-parasitic nematodes cause devastating agricultural damage worldwide. Only a few synthetic nematicides can be used and their application is limited in fields. Therefore, there is a need for sustainable and environment-friendly alternatives. Nematode-trapping fungi (NTF) are natural predators of nematodes. They capture and digest them with their hyphae and are starting to being used as bio-control agents. In this study, we applied the NTF Arthrobotrys flagrans (Duddingtonia flagrans) against the wine pathogenic nematode Xiphinema index. A. flagrans reduced the number of X. index juveniles in pot cultures of Ficus carica, an alternative host plant for X. index, significantly. Sodium-alginate pellets with A. flagrans spores were produced for vineyard soil inoculation under laboratory conditions. The NTF A. conoides, A. musiformis and A. superba were enriched from several soil samples, showing their natural presence. Trap formation is an energy-consuming process and depends upon various biotic and abiotic stimuli. Here, we show that bacteria of the genus Delftia, Bacillus, Pseudomonas, Enterobacter and Serratia induced trap formation in NTF like A. conoides and A. oligospora but not in A. flagrans in the absence of nematodes. The application of NTF along with such bacteria could be a combinatorial way of efficient biocontrol in nematode-infested soil.


Assuntos
Ascomicetos , Nematoides , Animais , Controle Biológico de Vetores , Nematoides/microbiologia , Esporos Fúngicos , Bactérias , Fezes/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...